
ANATOMíA DE

Nacho Lasheras
Gameplay Programmer
@supernacho@mastodon.gamedev.place

7 March 2015

GUI

In the beginning the UI was simple

Most of the player time was spent on the sec to sec, so as
developers we focus our effort there.

But that is not enough anymore

Why this mobile games need so much UI?

Sec to sec = intrinsically rewarding

EVE Online promises epic fleet battles...

Metagame = excite player with a extra 1%

EVE is, in reality, a game about waiting a month to put four launchers in your spaceship.

What can F2P learn from EVE?

● EVE is a service. Retention is key to CCP as
it is to us in F2P.

● EVE has quite simple gameplay: you select
a target and mash your weapons.

● EVE players create the “content” for other
players.

What does it have to do with UI?

Successful F2P games are hobbies, they need
a deep enough metagame to engage players
enough to keep playing.

⇒ This systems are usually heavily UI reliant.

Who builds it?

A lot of people involved

○ Game designer
○ 2D artist
○ UI/UX designer
○ Programmer

But who should do what?

Programmers think about the best way to do
something.

Artists think how can use the tools they have
to do it.

Artists/Programmers

Art is a hack, but a very pretty one

Artist content may not be elegant, but it will
be prettier than a programmer made one.

Artists don’t fix bugs

Offloading UI work to art team is a net win:

⇧ Better quality layouts
⇧ More time invested in them (more animation and

polish)
⇧ Understanding of the platform limitations

How to work with your
artist?

What is a layout?

If you want artists doing the UI, they need a
way of “building” the screens with the
minimum amount of help.

Ideally the UI layout is just data, like any
other asset.

Design Patterns

There is a lot of literature about MVC, MVVM
and MVP.

Depending on your use case a different
approach will be better for gluing the model
and the view.

● The sec to sec is one of the states of the UI
flow.

● The “main game loop” shows the screens

How the UI and sec to sec dance?

Style

You want your ButtonRed be a subclass of
MyGameButton

Changing the game style should be as easy
as possible. Because design is changing.

Atlases

If your engine supports
batching, you want to
maximize it on the UI.

Keep an eye on the draw calls
of the UI.

But don’t atlas too soon

Beware of packing stuff when your game
style is not set.

Resolutions
That is a very pretty layout… it would be a

shame if it didn’t fit the screen

This topic could fill it’s own talk

There are many different approaches to
scale UI to different sizes: anchors, springs,
grid based systems, ...

Making a UI dynamic is quite tricky, especially
if you have to support very different sizes.

Don’t try to solve it for everything

Set a “base” resolution to develop (most
common target device is better)

You want to use your dynamic system as
minimum as possible, as it needs a lot of
tweaking to make widgets resize to any size.

Resizing example

To resize from iPhone 4 (640x960) to iPhone 6
(750×1334) you need to resize 110 pixels in width and
374 in height.

1. Scale the screen to 750x1140
2. Use anchors to resize the layout 194 pixels in height.

Result of this approach usually looks better. NGUI and
New UI can be made to work that way out of the box.

If you want to support gamepads, think a
little about them.

Touch lets itself to create lots of clickable
stuff which is hard to navigate with a
gamepad.

Think about gamepads

Sometimes, size matters

In theory, a iPhone and iPad have very
similar resolutions.

In practice, you need a different UI because
the screen size is much bigger.

“A image is worth a
thousand words”

But text has their own set of problems in
the world of UI

Localization
● Word lengths (English is very short)
● Hardcoded string archeology
● Culture (decimal separators, currency

position)

That demo in CodeProject is happy enough with ASCII,
and it will be probably ok for EFIGS+Russian, but won’t
work for Asian languages.

Latin-9: 256
Chinese (Simplified): ~7,000
Chinese (Traditional): ~13,000
Korean: ~11,000 syllables

And Arab is even more complex.

Text Rendering

Fonts: Bitmap vs TTF

● Bitmaps are easy to implement, but
package size can get out of control. Try to
minimize number of faces.

● TTF are slower, but you only need “one
font” and they look nicer.

● A tradeoff would be using a TTF to
generate bitmaps on the fly.

If you really need to use Bitmap

Try to keep text scaling to the minimum.
Never scale up (except on animations).

Generate the fonts so they are displayed as
close to pixel-perfect.

If possible, evaluate using SDF

Some final tips
Lessons learned that I couldn’t fit

elsewhere.

Scripting

Very basic scripting will
help you with a lot of
common cases.

Full-featured scripting
will solve almost all of
them.

Some Unity tips

● DONT CODE YOUR UI FRAMEWORK
➢ Use New UI or buy NGUI (Noesis is also fine)

● No nested prefabs :(
● Each screen should be “runnable”
● PlayMaker for making UI flow

➢ Mecanim looks like it could be used for that, but
Animation state machines are not FSM

Questions?

Nacho Lasheras
@supernacho@mastodon.gamedev.place

